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Abstract---The models of unstable nucleate and film boiling are suggested. The model of bulk boiling takes 
into account the processes of heat transfer from an external source, nucleation, bubble growth and 
withdrawal of bubbles from the metastable zone. The surface of neutral stability for stationary boiling 
regimes is obtained and bifurcation analysis of the threshold of instability is carried out. The amplitude 
and frequency of non-linear self-oscillating regimes are calculated. The analysis of unstable boiling on a 
heating surface is based on the model of conjugate heat transfer problems in a plate of finite thickness and 
in a boundary layer. The conditions of transfer from pulsating nucleate boiling to the dry patch formed 
during boiling with repeated rewetting are determined. Theoretical results are compared with available 

experimental data. Copyright (71 1996 Elsevier Science Ltd. 

INTRODUCTION 

The behaviour of boiling liquids is usually com- 
plicated by a number of instabilities of various physi- 
cal origins resulting in self-oscillations, pulsations and 
crisis phenomena [l, 21. A great interest to the analysis 
of these problems is dictated by both important prac- 
tical applications of boiling systems and purely scien- 
tific goals to study a poorly known field of heat trans- 
fer under the conditions of high metastability and 
complex phase interaction. 

Hydrodynamic and thermohydrodynamic insta- 
bility of two-phase metastable systems can have a local 
character. These are : oscillations of a single bubble in 
the field of variable pressure or acoustic field [3, 41, 
the well-known Helmholtz and Taylor instabilities [5, 
61, collapse of bubbles [7, 81, etc. As distinct from the 
local instability, macro-instability affects the whole 
system : these are density-wave oscillations [9], acous- 
tic oscillations [IO], kinematic waves [ 1 l] or oscil- 
lations of pressure overfall [12]. Oscillations in two- 
phase systems can be smooth, nearly harmonic (wave 
flows of liquid in film boiling in a gravitational field 
on a heated surface being turned down), relaxational 
and ruptured (processes of nucleate, transition and 
film boiling), or can have complex stochastic character 
(turbulent flows in tubes). Since the behaviour of a 
two-phase system is very frequently determined by a 
contribution of several elementary physical mech- 
anisms of instability, the latter should be treated as a 
complex phenomenon when all the mechanisms oper- 
ate simultaneously. The analysis of the dynamic 
behaviour of two-phase systems is generally based on 
the fundamental differential conservation equations 
written out for each of the phases and supplemented 
with conjugate conditions on the interphase surfaces. 
However, it is impossible to obtain a full solution of 

these equations even in a stationary statement. 
Attempts to simultaneously take into account differ- 
ent instability mechanisms result in poorly traced and 
highly cumbersome numerical calculations [ 131. The 
latter, as a rule, give no chance either to single out 
the influence of different instability mechanisms or to 
reveal the main reason of instability in boiling systems. 
Thus, it seems natural to consider such factors separ- 
ately in the limits of the appropriate model statements. 

A special place is occupied by the physical mech- 
anism of instability in boiling liquids caused by a 
mutual interdependence between the external heating 
of the system and its cooling due to the absorption of 
the latent heat of vaporization during the evolution 
of a boiling particulate system. Depending on the 
method of external heating and the specifics of the 
system, this mechanism manifests itself both under the 
conditions of nucleate or film boiling on the heated 
surface and in the process of bulk boiling inside a 
volume of superheated liquid. 

Under the conditions of the bulk superheating of 
liquid, when nucleation on solid surfaces is absent, the 
majority of nucleation centres occur in the way of 
fluctuation both on deep intrusion into the metastable 
region and at moderate metastability, if there are 
“boiling kernels”, i.e. the zones of local superheating 
whose linear size is much in excess of the mean bubble 
radius [14]. At the initial stages of the process the 
activation at small superheating of the heterogeneous 
centres of nucleation that exist in liquid can be essen- 
tial. However, the role of such centres relaxes in due 
time because of their withdrawal with bubbles. 

Though in the process of bulk boiling, oscillations 
and pulsations are not so widely spread as in het- 
erogeneous boiling on heated surfaces, their practical 
importance is not to be underestimated. Just these 
phenomena may be responsible for periodic throws 
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NOMENCLATURE 

a,, a, thermal diffusivity in plane and liquid 
B(u) function introduced in equation (14) 
B’ coefficient introduced in equation (4) 
C thermal capacity of two-phase system, 

equation (2) 
c thermal capacity in plate, equation 

(24) 
,f(t, r) bubble size distribution function 

9 acceleration due to gravity 
N number concentration of molecules in 

liquid 

NA Avogadro number 
M molecular weight 
L latent heat for vaporization 

p0 equilibrium pressure 

P’ pressure in liquid 

AP pressure overdrop 
r bubble radius 
s dimensionless bubble radius 
f time 

f * dimensionless time 

T0 saturation temperature 
T,, Tz, T1 temperature in plate, liquid and 

vapour film, respectively 

T* wall temperature. 

Greek symbols 
C? effective heat transfer coefficient 
; bubble withdrawal rate 
i ‘0 thermal conductivity in plate 
/I’ thermal conductivity in liquid 
/I’, /I” dynamic viscosity in liquid and 

vapour, respectively 
I”, V” kinematic viscosity in liquid and 

vapour, respectively 

P> PO. P ) P ’ ” density of two-phase system, 
plate, liquid and vapour, 
respectively 

& 
surface tension 
coefficient introduced in equation (4) 

: , 

a ‘I”‘s,:[; (Z)dZ)!%&!!, 

Superscript 
0 corresponds to neutral stability curve. 

Subscript 
S corresponds to steady-state regime. 

of a two-phase mixture in modern nuclear reactors, 
caused by sudden boiling up of large masses of liquid. 
Such periodic throws of a two-phase mixture and ‘gey- 
sers’ are able to initiate some other instabilities, e.g. 
to cause the density and pressure waves and shell 
flows in steam generators of fast reactors. Thus, the 
instability of phase transition, having in essence the 
thermal nature, can cause thermohydrodynamic 
instabilities. 

Self-oscillating processes of bulk boiling are widely 
spread not only in modern technology, but also in 
nature. For example, periodic vapour throws in 
geysers, hot springs and fumaroles, being important 
for geothermal energetics, are common knowledge. 
The modern model of a geyser is based just on the 
idea of a sudden boiling up of water in underground 
reservoirs [ 1.51. 

A principal model describing the instability of 
stationary regimes of bulk boiling and formation of 
self-oscillating regimes was suggested for the first time 
in refs. [16, 171. These papers present a criterion of 
neutral stability for a stationary boiling regime and 
characteristics of self-oscillations originating in the 
regions of instability, which are studied in the approxi- 
mation of ruptured relaxational oscillations for the 
case of a very strong dependence of nucleation rate 
on superheating. The present paper develops the ideas 
of refs. [16, 171 and eliminates the shortcomings of 
these papers relating to physical and mathematical 
modelling of the process. 

As regards heterogeneous boiling on heated 
surfaces, pulsations and oscillations were observed 
repeatedly. The reasons for the origination of these 
phenomena are diverse. The problems of the stability 
of boiling regimes and oscillating phenomena may be 
treated locally, by considering the processes on a sin- 
gle nucleation site, or generally, by studying the insta- 
bility on a considerable part of a heated surface. The 
problems of boiling stability on a separate nucleation 
centre and corresponding local temperature pul- 
sations were studied by Mesler et al., Nesis et al. and 
Tolubinsky et ul. [ 18-201. The papers [ 19, 201 showed 
that unstable functioning of a nucleation centre is 
caused by a temporary damping of its activity due to 
a full vapour condensation in a cavity and its flooding 
by liquid and by random convective flows in liquid in 
the waiting period. Fluctuations of the surface tem- 
perature and unstable heat transfer regimes envel- 
oping the whole boiling surface are much more impor- 
tant. Such processes are observed most frequently in 
boiling liquid metals that easily wet the boiling surface 
(this causes large waiting times and high super- 
heatings). Pulsations of the surface temperature 
caused by turbulent flows and heat transfer in a vis- 
cous underlayer were investigated in refs. [21, 221. 
Oscillations and pulsations of the temperature of heat 
transfer surfaces in the process of boiling can result 
from the peculiarities of hydrodynamic processes 
occurring in power equipment and are most frequently 
encountered in annular dispersed two-phase flows ; 
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such processes were studied in refs. [23, 241. Charac- 
teristics of temperature oscillations resulting from the 
oscillations of the liquid film surface in the process of 
boiling on a vertical surface are obtained in ref. [25]. 
Temperature oscillations caused by the crises of heat 
transfer are of special importance. The paper [26] 
presents analytical models for calculating temperature 
oscillations in heat transfer tubes caused by a critical 
heat flux. The oscillating nature of convective con- 
ditions on the liquid--vapour interface is modelled 
under the assumption that a number of vortex-type 
wetting zones exist on the tube circumference. Sur- 
faces poorly provided with nucleation sites are con- 
ducive to the realization of the third boiling crisis, 
when the regime of a mono-phase convection period- 
ically changes into spontaneous boiling of metastable 
liquid. 

The present paper shows that self-oscillations in the 
process of heterogeneous boiling on a heated surface 
can arise even under the conditions of stable operation 
of nucleation sites. Such regimes are caused by a very 
strong dependence of the density of nucleation sites 
on the temperature force. The principal physical 
mechanism of self-oscillations is the same as that in 
bulk boiling, i.e. it consists of non-linear interaction 
between heat release and heat absorption during phase 
transition. It is very important that the limits of the 
model suggested give an opportunity to describe the 
process of unstable transition boiling when the heating 
surface is periodically wetted by liquid and vapour. 

INSTABILITY AND SELF-OSCILLATIONS IN THE 

PROCESS OF BULK BOILING 

The model 
Consider a sufficiently large volume of a super- 

heated liquid. Suppose that the nucleation centres 
have the activation nature, which is characterized by 
a strongly non-linear dependence of nucleation rate 
on superheating. To simplify the mathematical 
description, the parameters of a two-phase system are 
considered to be homogeneous throughout the whole 
volume, and the thermophysical characteristics of the 
both phases as constant. This assumption, however, is 
not a principal one in the sense that all the calculations 
given below can be rather easily adapted to situations 
when thermophysical characteristics are certain func- 
tions of temperature. The homogeneous heating of 
liquid can be carried out by means of electric current 
or radiation. In a more general case the assumption 
on the homogeneity of parameters is correct for non- 
uniform heating, if conductive or convective (organ- 
ized by means of the mixing of liquid due to its tur- 
bulization by moving bubbles) heat transfer in the 
volume is sufficiently intensive. The time of the 
nucleation rate relaxation to its stationary value in a 
metastable liquid 

8nN,p”kT -____ _ 10-9s 
MP” (PO -P’) 

is much smaller than the characteristic time scale of 
the process. Thus it is possible in what follows to use 
the results of the stationary nucleation theory. 

Under these assumptions the heat balance equation 
for the unit volume of the two-phase system and the 
kinetic equation describing the evolution of the bubble 
size distribution function assume the following form : 

PC%= c((T,,-T)-p’L 
s 

= d (“nr”).f‘(t, r) dr 
,* dt 3 

(2) 

= J(T- TO/T,). 
r=r* 

(3) 

We neglect random fluctuations of the bubble growth 
rate dr/dt in equation (3). They are usually taken into 
account by including appropriate diffusion terms into 
the boundary condition and equation (3). 

The nucleation rate J is determined by the Dering- 
Volmer and Frenkel-Zeldovich-Kagan theories : 

J = NB’exp (- W/kT) 

w= 
167-&Y 

3(p,-P’)*(l -p”/p’)” (4) 

The Dering-Volmer theory assumes that the growth 
rate of a vapour cluster is controlled by evaporation 
and condensation rates, and the influence of viscous 
and inertia forces is negligible. The Frenkel-Zel- 
dovich-Kagan theory describes the nucleation rate 
more correctly, taking account of viscous and inertia 
forces as well as the evaporation and heat supply rates. 
The difference between these theories consists in the 
form of the multiplier B’, which is a weak function of 
the state of the system. If heterogeneous centres of 
nucleation having the activation nature are present in 
the volume, it is necessary to choose an appropriate 
coefficient Y in equation (4) in order to coordinate the 
theoretical values of superheating with experimental 
ones. Note that reliable data on the values of the 
coefficient Y is accessible only for a few types of 
heterogeneous nucleation centres [27]. 

At a moderate pressure and superheating one can 
represent the difference pO -p’ as a value proportional 
to T- T,,. The use of the Clapeyron-Clausius equa- 
tion yields 

PO -P’ = 
L/p” T- TO 
p’--p” T” 

Evidently, the rate of the withdrawal of bubbles out 
of the volume considered depends essentially on their 
size. If the withdrawal is accomplished by the buoy- 
ancy forces in the field of gravitation, in the approxi- 
mation of free growth and moving of bubbles (when 
one can neglect thermohydrodynamic interaction of 
bubbles and the influence of the walls), it is reasonable 
to assume 

Y(Y) = xV(& (6) 



2366 YU. A. BUYEVICH and 1. A. NATALUKHA 

where V is the rate of the approach of a single bubble 
to the surface, and x is the coefficient of pro- 
portionality determined by the size of the metastable 
region. For very small bubbles, corresponding to the 
Reynolds numbers 

and having a spherical form, there is the Hadamard- 
Rybchinsky solution which takes account of the 
mobility of the bubble-liquid interface 

(8) 

When p’/$’ + 0, which corresponds to immovable 
(hardened) interface, equation (8) gives the Stokes 
formula 

When Re > 1, for the further analysis use will be made 
of the formulae from ref. [28] obtained by using the 
similarity theory 

: 

loor(i;“l);‘3 p$2!~]’ ?. y < r,, 
V(r) = 

i  

0 

r(p’ + P”) 
+ gr(p’-p”) I’2 

1 p’+p” ’ r 3 rn 

Equations (10) were verified by Malenkov [28] for 
a number of liquids ; he obtained a good cor- 
respondence with experimental data in the interval 
Re - 1450. Though equations (10) correspond to the 
bubbles being in equilibrium with liquid, they can also 
be recommended for nonequilibrium bubbles, exclud- 
ing the smallest ones, whose contribution to the 
integral term in equation (2) is negligible. 

There is a great variety of theoretical and empirical 
formulae describing the bubble growth rate. When the 
bubble growth is limited by the inertia of liquid, one 
obtains 

(11) 

For sufficiently large bubbles, whose growth is con- 
trolled by the heat supply rate for evaporation, the 
following approximate correlation is valid in a wide 
interval of the Jacobs numbers Ju [29] 

The evolution laws listed are asymptotic ones: at 
the initial stage the bubble growth is limited by inertia 

forces, and later, by heat transfer. Usually all the 
practical situations are located between equations (11) 
and (12). However, under some specific conditions the 
bubble growth is fully controlled by one of equations 
(11) or (12). For example, under high superheating, 
low pressure and high thermal conductivity, which is 
typical for liquid metals, formula (11) is valid during 
almost the whole period of growth. Under the con- 
ditions of low superheating, high pressure and low 
thermal conductivity the dynamics of the bubble 
growth is close to formula (I 2). 

Analysis and results 
Let us introduce new variables 

A(r) dr 
‘0 

B, 

T- To 
u=T,, .Y = 1 

’ 
f, = l’o I- B(Q)) d_ 

B, - 
r=x 

0 7,) 
(13) 

where 7,, is some typical value of the function y; if 
(og/p’y IS the scale of V, i.e. V = (og/p’)““U, then 
y,, = K(rrg/p’)“‘. In equations (13) the following gen- 
eral form for bubble growth rate is assumed 

dr B(u) 
~zzz~ 
dt A(r)’ (14) 

By using the method suggested in ref. [30] the 
bubble size distribution density in the variables of 
equations (I 3) can be obtained 

f’(t*,s) = 
i 

A(s). 

(15) 

Equation (1.5) was derived in the assumption that 
the boiling process was considered on the developed 
asymptotic stage, when the influence of initial con- 
ditions and initial bubble concentration in the volume 
was inessential (initial conditions are substituted in 
this case by the conditions of periodicity), and the 
crytical nuclei radius was negligibly small, i.e. 

(16) 

By using equation (15) in equation (2) it is possible 
to obtain, after a simple transformation, an integro- 
differential functional equation governing the evol- 
ution of relative superheating in the system 

B(u) du 
P’c”Z’” B, dt* ~ +a(u-u”,) 

+ 47ip”LB,B(a) 
~~’ c 

<’ J(u(t*-s)) 

YO To ” B(u(t,-3)) 

B,T(s - z) dz rz (s) ds 

B(u(r, -z)) 
~~- = 0. (17) 

A (s) 
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It is convenient to introduce the new variable and the 
Stanton parameters 

.x = (u - u,)/u, 

St = rx(u, - u,)/p’c’y,u, 

St, = xu,,:p~cf;‘ou,. (18) 

The effective Stanton numbers St and St, characterize 
the interaction between the integral heat emission and 
the heat release during the growth of a bubble. 

Taking account of equations (IS), equation (17) 
assumes the following form 

B(u) d.l- 

B, dt, 
+ (St,,, - .sf).Yu-- St + ZB$ 

X 

I 

’ J(u(t*-s)) 

,I JJ(u(t, -4) 

v*(~)ds 
p=o. (19) 

A(s) 

The bubble size distribution function and the super- 
heating corresponding to the stationary boiling regime 
are described by the stationary analogues of equations 
(15) and (19) 

s((u, -u,) = 
4np’LB, J$ 

;‘o To 
(20) 

(note that transcendental equations (20) can serve for 
determining the value of Z, if the stationary super- 
heating u, is known). 

The stationary boiling regime (20) may turn out to 
be unstable with respect to random fluctuations of 
temperature. The problem of stability is of great 
importance, since the stability break may cause 
changes in both the course of the process and its 
results. Analysis of stability with respect to small fluc- 
tuations of temperature can be carried out on the 
basis of linearized equation (19) : 

G’- RSt 
$+u(St:,,-St+RSt)+- 

* 

X .~(t,-.i)exp/-~r(3)d3j~ 

r(s--z).u(t,--)dz 

r2 (s) ds 

A(s) ’ 

where the following parameters are introduced 

(21) 

G’ = StG 

u,dlnJ 
G=- 

du /,=<,, 

dlnB 
R=u,---- 

du //mu1 
(22) 

where G is the Gibbs number. 
Expressing the temperature perturbation I in the 

form .Y = x,, exp (yt*), the following complex equation 
for the parameter i. is obtained : 

G’- RSt 
i+St,+St(R-l)+g- 

s I 

x 
0 

RSt x 

s (I 

’ 
+- F r(s - Z) exp ( - 3.:) dz 

xexpc” j 

” 

- ‘r(3)dz ) 
r2 (s) ds ~ -0. 

A(s) 0 
(23) 

When y = iw, where w is the rational quantity, equa- 
tion (23) represents the neutral stability surface. It was 
analysed for the both above-indicated bubble growth 
laws (11) and (12). The traces of the neutral stability 
surface G’ = G’“(St,, St, R) in the plane of the par- 
ameters G’ and St,,, for various values of St and R are 
shown in Fig. I. Since only the values u, > u, are 
physically real, the neutral stability curves shown in 
Fig. I should be treated only for St,,, > St. The region 
of instability is determined by the inequality G’ > G”‘. 
The instability is caused by the competition between 
the processes of heat supply, latent heat release during 
bubble growth, nucleation and bubble withdrawal 
from the metastable zone. Figure 1 demonstrates that 
in spite of high metastability, provided that G’ < G’” 
(the Gibbs number G is quite small in this region), the 
stationary regimes appear to be stable in the region 
indicated. Thus, the stability breaks only on the attain- 
ment of a sufficiently large slope in the nucleation rate 
as a function of superheating (the parameter G’ is 
proportional to dJ/du at u = u,). When the image 
point in the parametric space passes over the neutral 
stability boundary along the line at which St,,, is con- 
stant (i.e. in the vertical direction), the Gibbs number 
increases (i.e. the metastability decreases), but this is 
caused by the growth of the derivative (dJi’du),=,\ and 
is not connected with the changes in the nucleation 
rate. Hence the physical reason of the instability is a 
strongly nonlinear dependence of nucleation rate on 
superheating. 

One can easily see that when the bubble growth is 
limited by the liquid inertia, the stability region is 
much narrower than in the bubble growth limited 
by the heat supply rate for evaporation. This can be 
explained by the higher bubble growth rate according 
to the inertia law: the bubbles grow more quickly to 
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Fig. 1. Neutral stability curves in the plane (G’, S&J ; solid curve, St = St,,, ; dashed curve, St = 0.5 ; dashed- 
dotted curve, St = 1.5 ; 1, the bubble growth rate is described by equation (12), 2, by equation (11). 

a sufficiently large size and, hence, release the super- 
heating more rapidly, thus destabilizing the system. 
The instability has an oscillating nature. Figure 2 pre- 
sents the dependence of the oscillation period on the 
neutral stability surface on the Stanton number. 

The next significant problem concerns the character 
and properties of new unsteady regimes originating in 
consequence of the instability of the steady regimes. 
Since the instability is of an oscillating nature, one has 
to expect that either an auto-oscillating or a chaotic 
pulsating regime develops, depending on whether the 
break of stability of the stationary regime belongs 
to the ‘soft’ or ‘hard’ type. The following reasoning 
explains the origination of auto-oscillations from the 
physical point of view. Suppose that the superheating 
in the volume is slightly increased. This causes an 
increase of the nucleation rate. Under sufficiently high 
superheating, the dependence of the nucleation rate 
on the metastability is very sharp, thus leading to 
a spontaneous origination of nuclei. Under certain 
conditions, the growth of bubbles formed may lead to 
a decrease of the superheating being not compensated 
by the external heating. Such a decrease brings about 
a sharp decrease in the nucleation rate and, conse- 
quently, some reduction in the inner release of heat. 
After a period of time, this leads to a decrease of 

the total number of bubbles in the volume. Then the 
superheating due to a continuously acting heat source 
grows again, which in turn gives rise to a new enhance- 
ment of the nucleation and bubble growth rates. This 
reduces the superheating again, and thus an auto- 
oscillating cycle is established. 

To confirm this idea, the bifurcation analysis of 
integrodifferential equation (19) was undertaken. On 
the threshold of instability the analysis was carried 
out by the perturbation methods by using expansions 
with respect to small supercriticality (G’- G’“)/G’” 
(for the detailed description of this technique see ref. 
[30]). Far from the instability boundary, equation (19) 
was analysed numerically by the Eitken-Steffensen 
iterative method [31]. The results obtained show that 
the instability develops according to the ‘soft’ type, 
and the Landau-Hopf bifurcation of the stationary 
regime takes place. Thus, the secondary self-oscil- 
lating regime forms, the amplitude of which grows 
while the frequency decreases with an increase of the 
supercriticality (Fig. 3). However, the oscillation 
amplitude increases rapidly with an increase of the 
supercriticality, which makes the region of validity 
of slightly nonlinear self-oscillations very narrow (as 
distinct from slightly nonlinear almost harmonic self- 
oscillations in the processes of continuous crys- 

10 - 

Fig. 2. The oscillation period on the neutral stability curves 
for St = St,; 1, equation (12), 2, equation (11). 

o-o 
10-Z lo.’ 0 IO 

%l 

Fig. 3. The squared oscillation amplitude of the basic har- 
monic 4 of the superheating disturbance and the frequency 
shift W--W” as functions of St, and the supercriticality for 
the bubble growth rate described by equation (12) ; solid 

curve, Sr = St, ; dashed curve, Sr = 0. I. 
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G-G” 
CT 

Fig. 4. The amplitude and frequency of self-oscillations of 
superheating U/U, as functions of the supercriticality for 

St = 0.5. Sr,, = 1.0; l,equation (12); 2,equation(ll). 

tallization from supersaturated solutions and super- 
cooled melts, the region of the existence of which is 
much more wide; see ref. [30]). Thus, the slightly 
nonlinear boiling regime with a small relative ampli- 
tude can hardly be realized in practice. However, the 
results of investigation of slightly nonlinear self-oscil- 
lations prove to be useful for the numerical analysis 
of the evolution equation (19) when they are used as 
the test ones. 

The results of numerical analysis of the amplitude 
and frequency of self-oscillations of relative super- 
heating and the mean (averaged with respect to time) 
superheating are shown in Figs. 4 and 5. One can 
easily establish a correlation between the amplitude 
and the frequency of oscillations, which is an essential 
feature of nonlinear oscillations. It is worth nothing 
that the mean superheating decreases with a growth 
of the supercriticality, which is in full conformity with 
the result of the linear analysis. 

Important technological characteristics of self- 
oscillating boiling regimes are the oscillations of the 
concentration of bubbles and the total vapour mass 
in the power equipment. Since the bubble size dis- 
tribution is known [equation (15)], calculation of 

” 

-0.2 - 

..3,- 
I 10 102 

G’ - W’ 

CP 

Fig. 5. The amplitude and frequency of self-oscillations of 
the mean superheating (u,‘u.) - 1 as functions of the super- 
criticality for St = 0.5, St, = 1 .O ; 1, equation (12) ; 2, equa- 

tion (11). 

these characteristics is reduced to the calculation of 
the corresponding moments of the bubble size dis- 
tribution function. 

The above analysis evidence that the periodic oscil- 
lations of important characteristics of bulk boiling 
represent the rule rather than the exception. The 
results obtained give one an opportunity to calculate 
theoretically the amplitude, the frequency and the 
form of oscillating cycles depending on physical and 
regime parameters. 

Unfortunately, experimental verification of the 
results obtained is complicated now by the absense 
of experiments studying just the bulk boiling in a 
sufficiently large volume at a full exclusion of het- 
erogeneous boiling; in any case, the authors do not 
know of such experiments. However, the practical 
importance of the problem reflected above makes the 
arrangement of such experiments highly desirable. 

PERIODIC REGIMES OF NUCLEATE, FILM AND 

TRANSITION BOILING ON A SUPERHEATED 

SURFACE 

The model 
Consider a semi-infinite volume of liquid being in 

contact with a heated plate of finite thickness. In those 
cases when the surface temperature is higher than the 
saturation temperature, the maximum drop of the 
temperature occurs in a thin boundary layer. Met- 
astability in the boundary layer activates nuclei exist- 
ing in the cavities on the surface. The number of 
virtual nucleation centres, i.e. stable nuclei, at high 
heat fluxes is a strongly nonlinear function of the 
superheating and increases rapidly with a growth of 
the superheating. This causes a spontaneous gen- 
eration of bubbles at sufficiently high superheating. 
At the initial stage the bubbles are small, and the heat 
released cannot essentially reduce the superheating. 
After a while, the rate of heat release increases. Thus, 
the boundary layer cools and the surface temperature 
drops. Having reached the departure size, the bubbles 
quickly leave the heating surface, thus allowing for 
the inflow of relatively cold masses of liquid from the 
volume, which results in the cessation of nucleation. 
The condition determining the possibility of such a 
contact is retaining of thermodynamic stability of the 
boundary layer. (If the surface temperature is higher 
than the temperature of spinodal. the spontaneous 
boiling of a thin liquid layer and formation of a vap- 
our film takes place; this is the so-called ther- 
modynamic boiling crisis [32].) 

After some period of time the boundary layer is 
heated again to the temperature corresponding to 
intensive activation of cavities, and the cycle is 
repeated. Hence, an original regime of pulsating 
nucleate boiling, which was observed in experiments 
repeatedly [33], is established. At a sufficiently dense 
distribution of vapour generation centres or large 
departure diameter the bubbles may combine before 
reaching the departure diameter. Thus, the film boil- 
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ing may form, since the heat from the plate is trans- 
fered directly to the vapour film, separating the liquid 
and the heating surface, and favours the evaporation 
of liquid from the vapour-liquid interface. As the 
hydrodynamic instability of the film grows, the ampli- 
tude of the interface surface oscillations becomes com- 
parable with the dominant wave amplitude, i.e. a wave 
of low frequency for which the image point part of 
the frequency is maximum. Thus. the necessary con- 
dition for liquid separated from the heating surface 
by the vapour film, to contact with the surface is 
hydrodynamic instability of the film and thermo- 
dynamic stability of liquid at the place of contact. 
It is necessary to determine that condition which is 
fulfilled under smaller temperature gradient ; for boil- 
ing on the horizontal plate the possibility of contact 
is limited by the last condition. 

The boiling process described above is the transient 
boiling in the unstable regime, when the heating sur- 
face contacts alternatively with vapour and liquid, 
i.e. the so-called dry patch boiling with repeated 
rewetting. 

The analysis of nucleate, film and transient boiling 
was carried out on the basis of the following model. 
To describe the heat transfer in the plate, use was made 
of the heat conduction equation for the temperature 
T, (2, t) in the longitudinal section at the distance I 
from the lower surface of the plate 

Equation (24) is supplemented with boundary con- 
ditions, the first describing the heat flux from an exter- 
nal source and the second corresponding to the equal- 
ity of the wall temperature and that of the liquid on 
the heating surface 

T, (6, t) = Tz(6, t). (25) 

The initial temperature distribution in the plate can 
be arbitrary. It is assumed that T, (2, 0) = T, ,, = const. 

If the surface temperature is lower than the tem- 
perature of activation, one has the condition of bal- 
ance (conjugation) of heat fluxes 

(thus, the temperature regime on the heating surface 
is not set a priori, but is determined by the solution of 
heat conduction equations in the contacting regions). 

When there are no bubbles on the heating surface, 
one uses for the boundary layer the heat conduction 
equation analogous to equation (24) with the initial 
condition T2(z, 0) = rZ,, = const. 

Let us assume that the distribution density of virtual 
boiling centres on the surface is high enough to neglect 
the temperature variations in the horizontal direction. 

This assumption corresponds actually to negligibly 
small changes of the liquid temperature in the hori- 
zontal direction as compared with those in the vertical 
one (since the boundary layer, where the temperature 
gradients are maximum, is very thin). Besides that. 
the distribution of vapour generation centres is 
assumed to be homogeneous along the surface. Thus, 
it is assumed that the heat fluxes released in the boiling 
process by growing bubbles is uniform along the heat- 
ing surface. 

To calculate the bubble size distribution function, 
it is possible to use the correlations for the distribution 
density of active vapour generation centres obtained 
experimentally [34] 

c‘, k = const. (27) 

Formula (27) is obtained under the assumption of 
the activation nature of boiling centres, when their 
number is a strongly nonlinear function of super- 
heating. 

Convective heat transfer in the boundary layer 
caused by intensive turbulization of liquid by the 
bubbles is modelled by the heat conduction equation 
with the effective coefficient 

i,‘* = E.‘f‘*(Re, Pu) (28) 

being defined by thermohydrodynamic situation in 
the boundary layer and the thermophysical properties 
of the liquid. 

Taking account of the heat release during the bub- 
ble growth modifies the conjugation condition (26), 
which assumes the form 

where dQ z 47cp”Lr’dr is the heat conducted to the 
bubble during its growth. 

There are many correlations describing the bubble 
growth rate. If the heat is transferred to the bubble 
from the liquid in the form of evaporation heat close 
to the base of the bubble, then [35] 

dr “’ -_=$I.AT 6 
dt p”L 

-5t10, Juccl (30) 

(the heat is conducted to evaporation zone from the 
heating surface through the liquid microlayer close to 
the bubble). 

Taking account of the heat transferred to the bubble 
through the latter interphase surface gives the fol- 
lowing expression for the bubble growth [36] 

The paper [36] shows that 8, = 0.3 and pZ = 6 describe 
experimental data sufficiently well. 

It is convenient to introduce new variables and 
parameters 
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Fo = a, t/h’ 

0, = VI-- TO)ITO 

4 = z/s 

Ki = q6/1, T,, 

K = LIc3T0. (32) 

Then the system modelling the problem assumes the 
form 

ae, a201 -=~ 
8Fo at2 

80, - 
x ED 

= -Ki 

dOz a%, a2 -=~- 
8Fo at2 a, 

B,(l,Fo) = e2(1,Fo) 

(33) 

(bubbles are absent), 

5=1 (34) 

(heat realease for the bubble growth is taken into 
account). 

According to the model described above, at the 
moment of bubble departure from the heating surface 
Fo, its temperature instantly drops to a certain value 
@. For its approximate calculation it is possible to 
assume that the total volume of liquid, coming to the 
heating surface instead of bubbles, is equal to the 
total volume of removed bubbles V,. Taking into 
consideration that the boundary layer is intensively 
turbulized by moving bubbles (thus the temperature 
throughout the surface can be regarded as uniform), 
one obtains 

e: z & v*o, + (SD, - V*) 
* r 

s D./a 

x- 
D s &(5,Fo,) d5 (35) * o 1 

The correctness of such a definition increases at a 
decrease of the dispersivity of the bubble size dis- 
tribution function. 

If bubbles form a continuous vapour film before 
reaching the departure diameter, it is necessary to take 
into account that the heat from the plate is transferred 
to the vapour film, and then is spent for the liquid 
evaporation from the interphase surface. The initial 
film thickness is defined by the total volume of 

L-4 0.1 s 

Fig. 6. Self-oscillations in nucleate boiling; solid curve, 
theory ; dashed curve, experiment [37]. 

bubbles. To describe the film growth, the Stephan 
condition can be used : 

-~*!g+= Lp”9& z=y(t), (36) 

The condition of contact of hydrodynamically 
unstable liquid-vapour interface and the heating sur- 
face is the equality of the amplitude of the dominant 
wave [3] 

A = 0.25z”(p’g)2L 

(- aqm) 

qw = I., 2 (37) 

to the thickness of vapour film. 

Results and discussion 
The problem stated was analysed numerically by 

using the three-layer finite-difference Dufort-Frankel 
scheme. The calculation was carried out on a non- 
uniform grid with the grid fineness enhanced on the 
boundary surfaces. The results obtained show that in 
the both cases, corresponding to the pulsating 
nucleate and unstable transient boiling, the surface 
temperature oscillations have a typical relaxational 
character. The relaxational period is small and con- 
sists of a few oscillating cycles. The comparison of 
theoretical results with experiments [37, 381 is illus- 
trated in Figs. 6 and 7. Reference [37] studied self- 
oscillations of the surface temperature of a copper 
plate of thickness 0.2 mm for the nucleate boiling of 
distilled water at q = 4.57 x lo5 W mm2, which cor- 
responds to Ki = 2.36 x lo-‘, K = 32.75. Reference 
[38] analysed the dry patch formed during boiling with 
repeated rewetting of sodium on a nickel surface at 
6 = 6 mm, q = 5.6 x lo5 W mm’, which corresponds 
to Ki = 8.42 x lo-‘, K = 24.14. Figures 6 and 7 dem- 
onstrate an essential difference between the form of 
oscillations in nucleate and transition boiling. Self- 
oscillations in transition boiling have a serrated form, 
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Fig. 7. Self-oscillations at dry patch formed boiling with 
repeated rewetting; solid curve, theory; dashed curve. 

experiment [38]. 

which is connected with the release of latent heat of 
phase transition in the bubble growth before com- 
bining in the film, and then a rapid surface tem- 
perature enhancement due to the contact with the 
vapour film. The oscillation amplitude in transition 
boiling exceeds that in nucleate boiling. 

Determination of the conditions of transfer from 
nucleate to transition boiling, which corresponds to 
film formation before bubble departure, is of great 
interest. The model suggested allows for determining 
the critical superheating providing the film formation, 
as a function of coefficient k (see Fig. 8), i.e. the degree 
of nonlinear dependence of vapour generation centres 
density on superheating. 

CONCLUDING REMARKS 

The theory developed gives one an opportunity to 

predict conditions of transition from stable boiling 

regimes to unstable ones when the temperature and 

other characteristics of two-phase systems oscillate. 

As regards the bulk boiling, the boundaries separating 

the regions of stability and instability of stationary 

boiling regimes are obtained in analytical form for 
various regime and physical parameters. The analysis 
revealed that stationary regimes of bulk boiling are 

4 6 
k 

Fig. 8. The critical superheating AT,,, separating transition 
and nucleate boiling for Ki = 0.05, K = 20. 

stable in a very narrow interval of practically possible 
parameters and, consequently, can be hardly observed 
in experiments. The instability is caused by the 
strongly nonlinear dependence of nucleation rate on 
superheating. As distinct from continuous crystal- 
ization studied in the previous paper [30], the insta- 
bility in the bulk boiling grows rapidly (but it is not 
the ‘hard’ type of instability in mathematical sense). 
The amplitude and frequency of self-oscillations 
establishing as a result of the instability are calculated 
for the most typical laws of bubble growth, the pec- 
uliarities of which are revealed. 

The model suggested for nucleate and film boiling 
describes the phenomena of pulsating regime of 
nucleate boiling and dry patch formed during boiling 
and burnout, when the dry patch formation and the 
rewetting are alternatively repeated in intermittent 
boiling. Determination of conditions of transition to 
the latter type of film boiling seems to be the most 
valuable result of the second part of the paper. 
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